UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA

UNIDAD ACADÉMICA:

FACULTAD DE CIENCIAS QUÍMICAS

PROGRAMA DEL CURSO:

QUÍMICA ORGANOMETÁLICA Y CATÁLISIS

DES:	Ingeniería y Ciencias						
Programa(s) académico(s)	Maestría en Ciencias en Química						
Tipo de Materia: Obligatoria / Optativa	Optativa						
Clave de la Materia:	MQ306						
Semestre:	2 0 3						
Área en plan de estudios (B, P, E, O):	Е						
Total de horas por semana:	6						
Laboratorio o Taller:	0						
h./semana trabajo presencial/virtual	4						
h./semana laboratorio/taller	0						
h. trabajo extra-clase:	2						
Total de horas por semestre: Total de horas semana por 16 semanas	96						
Créditos totales:	6						
Fecha de actualización:	12 de febrero de 2024						
Responsable(s) del diseño del programa del curso:	Dr. Eduardo Valente Gómez Benítez Dra. Reyna Reyes Martínez						
Prerrequisito (s):							

DESCRIPCIÓN DE LA UNIDAD DE APRENDIZAJE/ CURSO:

Explica las características estructurales y electrónicas que requiere un compuesto organometálico para participar de manera eficiente en un ciclo catalítico, y proponer procesos de síntesis de compuestos organometálicos de una manera sostenible con el ambiente.

COMPETENCIA PRINCIPAL QUE SE DESARROLLA: QUIM5 – QUÍMICA DE MATERIALES

Aplica los conocimientos químicos y físicos para el estudio y desarrollo de materiales innovadores de manera sostenible para aplicaciones específicas.

OTRAS COMPETENCIAS A LAS QUE SE CONTRIBUYE CON EL DESARROLLO DE LA UNIDAD DE APRENDIZAJE/CURSO:

ET3. Fronteras del conocimiento y liderazgo científico (excelencia y vanguardia). Se centra en el desarrollo del pensamiento crítico, el conocimiento de innovaciones científicas, tecnológicas, humanísticas y artísticas para resolver problemas. Resalta la importancia de habilidades digitales, la colaboración en propuestas innovadoras, y el discernimiento ético para asegurar soluciones solidarias, responsables y sostenibles, bajo criterios de equidad e inclusión. Enfatiza la participación en contextos culturales diversos, el desarrollo socioemocional, y la formación continua. Las acciones incluyen la difusión de conocimientos, saberes y la promoción de proyectos innovadores desde las distintas disciplinas o tecnológicamente avanzados. Se aplica una visión centrada en la excelencia y vanguardia, considerando aspectos clave como la formación integral del estudiante. Esto implica no solo enfocarse en habilidades técnicas y conocimientos especializados, sino también en el desarrollo de habilidades blandas.

DOMINIOS	OBJETOS DE ESTUDIO	RESULTADOS DE APRENDIZAJE	METODOLOGÍA	EVIDENCIAS DE DESEMPEÑO				
	Introducción a la química organometálica 1.1. Antecedentes históricos	Entiende los principios de reactividad y características de los	Descripción de la metodología. Por ejemplo Discusión en Grupo	Actividad 1 Discusión de un artículo científico.				

QUIM5-1. Propone métodos de síntesis de materiales con características específicas que cumplan con los criterios de sostenibilidad aplicando conocimientos químicos y físicos. QUIM5-3. Aplica los conocimientos de catálisis homogénea y heterogénea de materiales. QUIM5-4. Analiza la estructura de los compuestos inorgánicos y su relación con sus propiedades. ET3-1. Desarrollo del pensamiento crítico a partir de la libertad, el análisis, la reflexión y la argumentación.	1.2. Compuestos organometálicos: Clasificación, electronegatividad, polaridad y reactividad del enlace M-C 1.3Métodos de preparación generales 2. Compuestos organometálicos con metales de transición 2.1. Regla de los 18 y 16 electrones. Conteo de electrones. 2.2. Ligantes relevantes en química organometálica. Complejos carbonílicos (CO). 2.3Hidruros y complejos de dihidrógeno. 2.4 Ligantes con sistema pi extendido 2.4.1 Enlace entre átomos metálicos y sistemas orgánicos pi. 2.4.2 Sistemas pi líneales. 2.4.3 Sistemas pi cíclicos 2.5 Complejos que contienen enlaces M-C sencillos, dobles y triples. 2.5.1 Complejos de carbeno. 2.5.3Complejos de carbeno. 2.5.3Complejos de carbeno. 2.5.3Complejos de carbino 2.6 Análisis espectral y compuestos organometálicos. 2.6.1 Espectroscopia infrarroja 2.6.2Resonancia Magnética Nuclear	Reconoce la relación entre complejos de 16 y diferentes ligantes. Establece estabilidad de complejos de acuerdo con su conteo de electrones.	Analiza artículos científicos sobre la reactividad del enlace M-C Ejercicios Guiados Resuelve problemas en clase relacionados con la identificación de enlaces M-C en diferentes compuestos organometálicos Clase Magistral Explica las características de las principales de los enlaces organometálicos y su aplicación en reacciones catalíticas Recursos didácticos. Búsqueda y análisis de la información Discusiones de artículos científicos.	Actividad 2 Presentación de artículo. Examen 2
	3. Reacciones de compuestos organometálicos 3.1. Sustitución y disociación de ligante. 3.2 Adición oxidativa. Eliminación reductiva. 3.3 Desplazamiento de nucleófilo 3.4 Inserción. 3.4.1 Inserción de carbonilos (migración de alquilos). 3.4.2 Inserciones 1,2. Eliminación de hidruros. 3.5 Abstracción	Desarrolla mecanismos de reacción en reacciones organometálicas		Examen 3 Actividad 3 Presentación de
	4.1. Ciclos catalíticos	de impacto en		artículo de

ir F Is a o F N F	4.2Ciclos catalíticos mportantes: Hidroformilación Proceso Monsanto en a síntesis del ácido acético, Metátesis de olefinas, Proceso Fischer-Tropsch, Proceso Ziegler-Natta, Reacción de Heck,	aplicaciones industriales.	
F	Reacción de Suzuki, Reacción de Sonogashira.		

FUENTES DE INFORMACIÓN	EVALUACIÓN DE LOS APRENDIZAJES								
Elschenbroich, Ch. Salzer, A., (2006) Organometallics (3rd. Edition) Germany, Wiley-VCH. Bhaduri, S., Mukesh, D., (2014). Homogeneous Catalysis: Mechanisms and Industrial Applications (2nd Edition) New York, Wiley-VCH.	Instrumentos de Evaluación Presentación de artículos científico: Realizará una presentación oral utilizando recursos digitales o multimedia (power point, geneally, canva, etc) en donde se le evaluará: Estructura de la presentación Contenido Expresión Oral Domino del tema								
Crabtree, R. H. (2001), The Organometallic Chemistry of the Transition Metals (3rd ed) New York, J. Wiley.	Exámenes: Se realizarán exámenes de conceptos teóricos. Ponderación Presentaciones 50% Exámenes 50%								

Perfil del docente que imparte el curso

El docente deberá tener estudios de Maestría o Doctorado en Ciencias Químicas, con especialidad en Química Inorgánica. Experiencia en docencia de licenciatura y posgrado en asignaturas de Química Inorgánica como: Química Organometálica, Química de Coordinación y Catálisis.

CRONOGRAMA DEL AVANCE PROGRAMÁTICA

	Semanas															
Objetos de Estudio		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1. INTRODUCCIÓN A LA QUÍMICA ORGANOMETÁLICA																
2. COMPUESTOS ORGANOMETÁLICOS CON METALES DE TRANSICIÓN																
3. REACCIONES DE COMPUESTOS ORGANOMETÁLICOS																
4.CATÁLISIS																